sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,15,50,42]))
pari:[g,chi] = znchar(Mod(59,3600))
| Modulus: | \(3600\) | |
| Conductor: | \(3600\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3600}(59,\cdot)\)
\(\chi_{3600}(419,\cdot)\)
\(\chi_{3600}(659,\cdot)\)
\(\chi_{3600}(779,\cdot)\)
\(\chi_{3600}(1019,\cdot)\)
\(\chi_{3600}(1139,\cdot)\)
\(\chi_{3600}(1379,\cdot)\)
\(\chi_{3600}(1739,\cdot)\)
\(\chi_{3600}(1859,\cdot)\)
\(\chi_{3600}(2219,\cdot)\)
\(\chi_{3600}(2459,\cdot)\)
\(\chi_{3600}(2579,\cdot)\)
\(\chi_{3600}(2819,\cdot)\)
\(\chi_{3600}(2939,\cdot)\)
\(\chi_{3600}(3179,\cdot)\)
\(\chi_{3600}(3539,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3151,901,2801,577)\) → \((-1,i,e\left(\frac{5}{6}\right),e\left(\frac{7}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 3600 }(59, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{7}{15}\right)\) |
sage:chi.jacobi_sum(n)