Properties

Label 3600.23
Modulus $3600$
Conductor $1800$
Order $60$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,30,50,33]))
 
pari: [g,chi] = znchar(Mod(23,3600))
 

Basic properties

Modulus: \(3600\)
Conductor: \(1800\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1800}(923,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3600.fm

\(\chi_{3600}(23,\cdot)\) \(\chi_{3600}(167,\cdot)\) \(\chi_{3600}(263,\cdot)\) \(\chi_{3600}(887,\cdot)\) \(\chi_{3600}(983,\cdot)\) \(\chi_{3600}(1127,\cdot)\) \(\chi_{3600}(1463,\cdot)\) \(\chi_{3600}(1703,\cdot)\) \(\chi_{3600}(1847,\cdot)\) \(\chi_{3600}(2183,\cdot)\) \(\chi_{3600}(2327,\cdot)\) \(\chi_{3600}(2423,\cdot)\) \(\chi_{3600}(2567,\cdot)\) \(\chi_{3600}(2903,\cdot)\) \(\chi_{3600}(3047,\cdot)\) \(\chi_{3600}(3287,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((3151,901,2801,577)\) → \((-1,-1,e\left(\frac{5}{6}\right),e\left(\frac{11}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3600 }(23, a) \) \(-1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{43}{60}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{11}{30}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3600 }(23,a) \;\) at \(\;a = \) e.g. 2