![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,15,5,27]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,15,5,27]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(119,3600))
        pari:[g,chi] = znchar(Mod(119,3600))
         
     
    
  \(\chi_{3600}(119,\cdot)\)
  \(\chi_{3600}(839,\cdot)\)
  \(\chi_{3600}(1319,\cdot)\)
  \(\chi_{3600}(1559,\cdot)\)
  \(\chi_{3600}(2039,\cdot)\)
  \(\chi_{3600}(2279,\cdot)\)
  \(\chi_{3600}(2759,\cdot)\)
  \(\chi_{3600}(3479,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((3151,901,2801,577)\) → \((-1,-1,e\left(\frac{1}{6}\right),e\left(\frac{9}{10}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | 
    
    
      | \( \chi_{ 3600 }(119, a) \) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{30}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)