Properties

Label 360.113
Modulus $360$
Conductor $45$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(360, base_ring=CyclotomicField(12))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,0,10,9]))
 
pari: [g,chi] = znchar(Mod(113,360))
 

Basic properties

Modulus: \(360\)
Conductor: \(45\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{45}(23,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 360.bs

\(\chi_{360}(113,\cdot)\) \(\chi_{360}(137,\cdot)\) \(\chi_{360}(257,\cdot)\) \(\chi_{360}(353,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: \(\Q(\zeta_{45})^+\)

Values on generators

\((271,181,281,217)\) → \((1,1,e\left(\frac{5}{6}\right),-i)\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\(1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{11}{12}\right)\)\(i\)\(-1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(-i\)\(e\left(\frac{1}{6}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 360 }(113,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{360}(113,\cdot)) = \sum_{r\in \Z/360\Z} \chi_{360}(113,r) e\left(\frac{r}{180}\right) = 0.0 \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 360 }(113,·),\chi_{ 360 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{360}(113,\cdot),\chi_{360}(1,\cdot)) = \sum_{r\in \Z/360\Z} \chi_{360}(113,r) \chi_{360}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 360 }(113,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{360}(113,·)) = \sum_{r \in \Z/360\Z} \chi_{360}(113,r) e\left(\frac{1 r + 2 r^{-1}}{360}\right) = 0.0 \)