sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(345, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,0,12]))
pari:[g,chi] = znchar(Mod(41,345))
\(\chi_{345}(26,\cdot)\)
\(\chi_{345}(41,\cdot)\)
\(\chi_{345}(71,\cdot)\)
\(\chi_{345}(101,\cdot)\)
\(\chi_{345}(131,\cdot)\)
\(\chi_{345}(146,\cdot)\)
\(\chi_{345}(236,\cdot)\)
\(\chi_{345}(266,\cdot)\)
\(\chi_{345}(311,\cdot)\)
\(\chi_{345}(326,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((116,277,166)\) → \((-1,1,e\left(\frac{6}{11}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 345 }(41, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)