sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(345, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,11,15]))
pari:[g,chi] = znchar(Mod(134,345))
Modulus: | \(345\) | |
Conductor: | \(345\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(22\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{345}(14,\cdot)\)
\(\chi_{345}(44,\cdot)\)
\(\chi_{345}(74,\cdot)\)
\(\chi_{345}(89,\cdot)\)
\(\chi_{345}(134,\cdot)\)
\(\chi_{345}(149,\cdot)\)
\(\chi_{345}(194,\cdot)\)
\(\chi_{345}(224,\cdot)\)
\(\chi_{345}(314,\cdot)\)
\(\chi_{345}(329,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((116,277,166)\) → \((-1,-1,e\left(\frac{15}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 345 }(134, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)