Properties

Label 3400.1291
Modulus $3400$
Conductor $3400$
Order $10$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3400, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([5,5,2,5]))
 
Copy content pari:[g,chi] = znchar(Mod(1291,3400))
 

Basic properties

Modulus: \(3400\)
Conductor: \(3400\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3400.cs

\(\chi_{3400}(611,\cdot)\) \(\chi_{3400}(1291,\cdot)\) \(\chi_{3400}(1971,\cdot)\) \(\chi_{3400}(3331,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.0.7099285000000000000000.1

Values on generators

\((2551,1701,2177,1601)\) → \((-1,-1,e\left(\frac{1}{5}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3400 }(1291, a) \) \(-1\)\(1\)\(e\left(\frac{9}{10}\right)\)\(1\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3400 }(1291,a) \;\) at \(\;a = \) e.g. 2