# Properties

 Label 3381.bk Modulus $3381$ Conductor $147$ Order $42$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(3381, base_ring=CyclotomicField(42))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([21,5,0]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(47,3381))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$3381$$ Conductor: $$147$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$42$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 147.o sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{21})$$ Fixed field: $$\Q(\zeta_{147})^+$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$4$$ $$5$$ $$8$$ $$10$$ $$11$$ $$13$$ $$16$$ $$17$$ $$19$$
$$\chi_{3381}(47,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{25}{42}\right)$$ $$e\left(\frac{4}{21}\right)$$ $$e\left(\frac{20}{21}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{23}{42}\right)$$ $$e\left(\frac{11}{42}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{10}{21}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3381}(185,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{42}\right)$$ $$e\left(\frac{11}{21}\right)$$ $$e\left(\frac{13}{21}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{37}{42}\right)$$ $$e\left(\frac{25}{42}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{17}{21}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3381}(530,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{31}{42}\right)$$ $$e\left(\frac{10}{21}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{5}{42}\right)$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{20}{21}\right)$$ $$e\left(\frac{4}{21}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3381}(1013,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{37}{42}\right)$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{17}{21}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{29}{42}\right)$$ $$e\left(\frac{23}{42}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{11}{21}\right)$$ $$e\left(\frac{19}{21}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3381}(1151,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{17}{21}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{31}{42}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{13}{21}\right)$$ $$e\left(\frac{11}{21}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3381}(1496,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{42}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{5}{21}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{11}{42}\right)$$ $$e\left(\frac{29}{42}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{2}{21}\right)$$ $$e\left(\frac{13}{21}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3381}(1634,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{41}{42}\right)$$ $$e\left(\frac{20}{21}\right)$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{31}{42}\right)$$ $$e\left(\frac{13}{42}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{19}{21}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3381}(2117,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{23}{42}\right)$$ $$e\left(\frac{2}{21}\right)$$ $$e\left(\frac{10}{21}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{1}{42}\right)$$ $$e\left(\frac{37}{42}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{4}{21}\right)$$ $$e\left(\frac{5}{21}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3381}(2462,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{42}\right)$$ $$e\left(\frac{13}{21}\right)$$ $$e\left(\frac{2}{21}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{41}{42}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{5}{21}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3381}(2600,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{42}\right)$$ $$e\left(\frac{5}{21}\right)$$ $$e\left(\frac{4}{21}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{13}{42}\right)$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{10}{21}\right)$$ $$e\left(\frac{2}{21}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3381}(2945,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{19}{21}\right)$$ $$e\left(\frac{11}{21}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{41}{42}\right)$$ $$e\left(\frac{5}{42}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{17}{21}\right)$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3381}(3083,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{29}{42}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{19}{21}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{25}{42}\right)$$ $$e\left(\frac{1}{42}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{20}{21}\right)$$ $$e\left(\frac{5}{6}\right)$$