sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3332, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,10,7]))
pari:[g,chi] = znchar(Mod(407,3332))
| Modulus: | \(3332\) | |
| Conductor: | \(3332\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(14\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3332}(407,\cdot)\)
\(\chi_{3332}(1359,\cdot)\)
\(\chi_{3332}(1835,\cdot)\)
\(\chi_{3332}(2311,\cdot)\)
\(\chi_{3332}(2787,\cdot)\)
\(\chi_{3332}(3263,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1667,885,785)\) → \((-1,e\left(\frac{5}{7}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(23\) | \(25\) | \(27\) |
| \( \chi_{ 3332 }(407, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(-1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) |
sage:chi.jacobi_sum(n)