from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3332, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,16,9]))
pari: [g,chi] = znchar(Mod(3007,3332))
Basic properties
Modulus: | \(3332\) | |
Conductor: | \(476\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{476}(151,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3332.bp
\(\chi_{3332}(263,\cdot)\) \(\chi_{3332}(655,\cdot)\) \(\chi_{3332}(1243,\cdot)\) \(\chi_{3332}(1647,\cdot)\) \(\chi_{3332}(2235,\cdot)\) \(\chi_{3332}(2627,\cdot)\) \(\chi_{3332}(3007,\cdot)\) \(\chi_{3332}(3215,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | Number field defined by a degree 24 polynomial |
Values on generators
\((1667,885,785)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{3}{8}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 3332 }(3007, a) \) | \(-1\) | \(1\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) |
sage: chi.jacobi_sum(n)