from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3332, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,8,9]))
pari: [g,chi] = znchar(Mod(2547,3332))
Basic properties
Modulus: | \(3332\) | |
Conductor: | \(476\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(16\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{476}(167,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3332.bn
\(\chi_{3332}(979,\cdot)\) \(\chi_{3332}(1371,\cdot)\) \(\chi_{3332}(1567,\cdot)\) \(\chi_{3332}(1763,\cdot)\) \(\chi_{3332}(2351,\cdot)\) \(\chi_{3332}(2547,\cdot)\) \(\chi_{3332}(2743,\cdot)\) \(\chi_{3332}(3135,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{16})\) |
Fixed field: | 16.0.1081429148943439468514652520448.1 |
Values on generators
\((1667,885,785)\) → \((-1,-1,e\left(\frac{9}{16}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 3332 }(2547, a) \) | \(-1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) |
sage: chi.jacobi_sum(n)