sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3328, base_ring=CyclotomicField(64))
M = H._module
chi = DirichletCharacter(H, M([32,43,48]))
pari:[g,chi] = znchar(Mod(1955,3328))
Modulus: | \(3328\) | |
Conductor: | \(3328\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(64\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3328}(83,\cdot)\)
\(\chi_{3328}(203,\cdot)\)
\(\chi_{3328}(291,\cdot)\)
\(\chi_{3328}(411,\cdot)\)
\(\chi_{3328}(499,\cdot)\)
\(\chi_{3328}(619,\cdot)\)
\(\chi_{3328}(707,\cdot)\)
\(\chi_{3328}(827,\cdot)\)
\(\chi_{3328}(915,\cdot)\)
\(\chi_{3328}(1035,\cdot)\)
\(\chi_{3328}(1123,\cdot)\)
\(\chi_{3328}(1243,\cdot)\)
\(\chi_{3328}(1331,\cdot)\)
\(\chi_{3328}(1451,\cdot)\)
\(\chi_{3328}(1539,\cdot)\)
\(\chi_{3328}(1659,\cdot)\)
\(\chi_{3328}(1747,\cdot)\)
\(\chi_{3328}(1867,\cdot)\)
\(\chi_{3328}(1955,\cdot)\)
\(\chi_{3328}(2075,\cdot)\)
\(\chi_{3328}(2163,\cdot)\)
\(\chi_{3328}(2283,\cdot)\)
\(\chi_{3328}(2371,\cdot)\)
\(\chi_{3328}(2491,\cdot)\)
\(\chi_{3328}(2579,\cdot)\)
\(\chi_{3328}(2699,\cdot)\)
\(\chi_{3328}(2787,\cdot)\)
\(\chi_{3328}(2907,\cdot)\)
\(\chi_{3328}(2995,\cdot)\)
\(\chi_{3328}(3115,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1535,261,769)\) → \((-1,e\left(\frac{43}{64}\right),-i)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 3328 }(1955, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{64}\right)\) | \(e\left(\frac{27}{64}\right)\) | \(e\left(\frac{15}{32}\right)\) | \(e\left(\frac{1}{32}\right)\) | \(e\left(\frac{55}{64}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{45}{64}\right)\) | \(e\left(\frac{31}{64}\right)\) | \(e\left(\frac{13}{32}\right)\) |
sage:chi.jacobi_sum(n)