sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3300, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,5,0,1]))
pari:[g,chi] = znchar(Mod(101,3300))
\(\chi_{3300}(101,\cdot)\)
\(\chi_{3300}(701,\cdot)\)
\(\chi_{3300}(1601,\cdot)\)
\(\chi_{3300}(2801,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1651,2201,2377,1201)\) → \((1,-1,1,e\left(\frac{1}{10}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 3300 }(101, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(-1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)