# Properties

 Label 33.b Modulus $33$ Conductor $3$ Order $2$ Real yes Primitive no Minimal yes Parity odd

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(33, base_ring=CyclotomicField(2))

M = H._module

chi = DirichletCharacter(H, M([1,0]))

chi.galois_orbit()

[g,chi] = znchar(Mod(23,33))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$33$$ Conductor: $$3$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$2$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: no, induced from 3.b sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q(\sqrt{-3})$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$4$$ $$5$$ $$7$$ $$8$$ $$10$$ $$13$$ $$14$$ $$16$$ $$17$$
$$\chi_{33}(23,\cdot)$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$