Basic properties
Modulus: | \(3267\) | |
Conductor: | \(297\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(90\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{297}(238,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3267.bf
\(\chi_{3267}(40,\cdot)\) \(\chi_{3267}(94,\cdot)\) \(\chi_{3267}(112,\cdot)\) \(\chi_{3267}(403,\cdot)\) \(\chi_{3267}(457,\cdot)\) \(\chi_{3267}(475,\cdot)\) \(\chi_{3267}(481,\cdot)\) \(\chi_{3267}(844,\cdot)\) \(\chi_{3267}(1129,\cdot)\) \(\chi_{3267}(1183,\cdot)\) \(\chi_{3267}(1201,\cdot)\) \(\chi_{3267}(1492,\cdot)\) \(\chi_{3267}(1546,\cdot)\) \(\chi_{3267}(1564,\cdot)\) \(\chi_{3267}(1570,\cdot)\) \(\chi_{3267}(1933,\cdot)\) \(\chi_{3267}(2218,\cdot)\) \(\chi_{3267}(2272,\cdot)\) \(\chi_{3267}(2290,\cdot)\) \(\chi_{3267}(2581,\cdot)\) \(\chi_{3267}(2635,\cdot)\) \(\chi_{3267}(2653,\cdot)\) \(\chi_{3267}(2659,\cdot)\) \(\chi_{3267}(3022,\cdot)\)
Related number fields
Field of values: | $\Q(\zeta_{45})$ |
Fixed field: | Number field defined by a degree 90 polynomial |
Values on generators
\((3026,244)\) → \((e\left(\frac{7}{9}\right),e\left(\frac{7}{10}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 3267 }(1129, a) \) | \(-1\) | \(1\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{29}{30}\right)\) |