sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3240, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,9,16,9]))
pari:[g,chi] = znchar(Mod(19,3240))
\(\chi_{3240}(19,\cdot)\)
\(\chi_{3240}(739,\cdot)\)
\(\chi_{3240}(1099,\cdot)\)
\(\chi_{3240}(1819,\cdot)\)
\(\chi_{3240}(2179,\cdot)\)
\(\chi_{3240}(2899,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2431,1621,3161,1297)\) → \((-1,-1,e\left(\frac{8}{9}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 3240 }(19, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) |
sage:chi.jacobi_sum(n)