sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3240, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([54,54,40,81]))
pari:[g,chi] = znchar(Mod(1003,3240))
Modulus: | \(3240\) | |
Conductor: | \(3240\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(108\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3240}(43,\cdot)\)
\(\chi_{3240}(67,\cdot)\)
\(\chi_{3240}(187,\cdot)\)
\(\chi_{3240}(283,\cdot)\)
\(\chi_{3240}(403,\cdot)\)
\(\chi_{3240}(427,\cdot)\)
\(\chi_{3240}(547,\cdot)\)
\(\chi_{3240}(643,\cdot)\)
\(\chi_{3240}(763,\cdot)\)
\(\chi_{3240}(787,\cdot)\)
\(\chi_{3240}(907,\cdot)\)
\(\chi_{3240}(1003,\cdot)\)
\(\chi_{3240}(1123,\cdot)\)
\(\chi_{3240}(1147,\cdot)\)
\(\chi_{3240}(1267,\cdot)\)
\(\chi_{3240}(1363,\cdot)\)
\(\chi_{3240}(1483,\cdot)\)
\(\chi_{3240}(1507,\cdot)\)
\(\chi_{3240}(1627,\cdot)\)
\(\chi_{3240}(1723,\cdot)\)
\(\chi_{3240}(1843,\cdot)\)
\(\chi_{3240}(1867,\cdot)\)
\(\chi_{3240}(1987,\cdot)\)
\(\chi_{3240}(2083,\cdot)\)
\(\chi_{3240}(2203,\cdot)\)
\(\chi_{3240}(2227,\cdot)\)
\(\chi_{3240}(2347,\cdot)\)
\(\chi_{3240}(2443,\cdot)\)
\(\chi_{3240}(2563,\cdot)\)
\(\chi_{3240}(2587,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2431,1621,3161,1297)\) → \((-1,-1,e\left(\frac{10}{27}\right),-i)\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 3240 }(1003, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{108}\right)\) | \(e\left(\frac{22}{27}\right)\) | \(e\left(\frac{77}{108}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{89}{108}\right)\) | \(e\left(\frac{19}{27}\right)\) | \(e\left(\frac{49}{54}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{17}{27}\right)\) |
sage:chi.jacobi_sum(n)