sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([11,63]))
pari:[g,chi] = znchar(Mod(129,322))
\(\chi_{322}(5,\cdot)\)
\(\chi_{322}(17,\cdot)\)
\(\chi_{322}(19,\cdot)\)
\(\chi_{322}(33,\cdot)\)
\(\chi_{322}(61,\cdot)\)
\(\chi_{322}(89,\cdot)\)
\(\chi_{322}(103,\cdot)\)
\(\chi_{322}(129,\cdot)\)
\(\chi_{322}(143,\cdot)\)
\(\chi_{322}(145,\cdot)\)
\(\chi_{322}(157,\cdot)\)
\(\chi_{322}(159,\cdot)\)
\(\chi_{322}(171,\cdot)\)
\(\chi_{322}(199,\cdot)\)
\(\chi_{322}(201,\cdot)\)
\(\chi_{322}(227,\cdot)\)
\(\chi_{322}(241,\cdot)\)
\(\chi_{322}(283,\cdot)\)
\(\chi_{322}(297,\cdot)\)
\(\chi_{322}(313,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((185,281)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{21}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(25\) | \(27\) |
\( \chi_{ 322 }(129, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{66}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{7}{22}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)