# Properties

 Conductor 1575 Order 60 Real no Primitive no Minimal yes Parity even Orbit label 3150.el

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(3150)

sage: chi = H[2383]

pari: [g,chi] = znchar(Mod(2383,3150))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Conductor = 1575 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 60 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = no Minimal = yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = even Orbit label = 3150.el Orbit index = 116

## Galois orbit

sage: chi.sage_character().galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(2801,127,451)$$ → $$(e\left(\frac{2}{3}\right),e\left(\frac{3}{20}\right),e\left(\frac{1}{6}\right))$$

## Values

 -1 1 11 13 17 19 23 29 31 37 41 43 $$1$$ $$1$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{41}{60}\right)$$ $$e\left(\frac{7}{60}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{19}{60}\right)$$ $$e\left(\frac{29}{30}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{41}{60}\right)$$ $$e\left(\frac{13}{30}\right)$$ $$e\left(\frac{11}{12}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{60})$$