Properties

Conductor 105
Order 12
Real no
Primitive no
Minimal yes
Parity odd
Orbit label 315.cd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(315)
 
sage: chi = H[17]
 
pari: [g,chi] = znchar(Mod(17,315))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 105
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 12
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = no
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 315.cd
Orbit index = 56

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{315}(17,\cdot)\) \(\chi_{315}(143,\cdot)\) \(\chi_{315}(152,\cdot)\) \(\chi_{315}(278,\cdot)\)

Values on generators

\((281,127,136)\) → \((-1,i,e\left(\frac{1}{6}\right))\)

Values

-1124811131617192223
\(-1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(i\)\(e\left(\frac{1}{6}\right)\)\(i\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(i\)\(e\left(\frac{7}{12}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{12})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 315 }(17,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{315}(17,\cdot)) = \sum_{r\in \Z/315\Z} \chi_{315}(17,r) e\left(\frac{2r}{315}\right) = 0.0 \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 315 }(17,·),\chi_{ 315 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{315}(17,\cdot),\chi_{315}(1,\cdot)) = \sum_{r\in \Z/315\Z} \chi_{315}(17,r) \chi_{315}(1,1-r) = -3 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 315 }(17,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{315}(17,·)) = \sum_{r \in \Z/315\Z} \chi_{315}(17,r) e\left(\frac{1 r + 2 r^{-1}}{315}\right) = -0.0 \)