Properties

Conductor 315
Order 12
Real no
Primitive yes
Minimal yes
Parity even
Orbit label 315.cg

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(315)
 
sage: chi = H[157]
 
pari: [g,chi] = znchar(Mod(157,315))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 315
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 12
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = even
Orbit label = 315.cg
Orbit index = 59

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{315}(157,\cdot)\) \(\chi_{315}(187,\cdot)\) \(\chi_{315}(283,\cdot)\) \(\chi_{315}(313,\cdot)\)

Values on generators

\((281,127,136)\) → \((e\left(\frac{1}{3}\right),i,e\left(\frac{1}{6}\right))\)

Values

-1124811131617192223
\(1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(-i\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(-i\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{12})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 315 }(157,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{315}(157,\cdot)) = \sum_{r\in \Z/315\Z} \chi_{315}(157,r) e\left(\frac{2r}{315}\right) = 13.390647602+-11.6486289665i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 315 }(157,·),\chi_{ 315 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{315}(157,\cdot),\chi_{315}(1,\cdot)) = \sum_{r\in \Z/315\Z} \chi_{315}(157,r) \chi_{315}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 315 }(157,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{315}(157,·)) = \sum_{r \in \Z/315\Z} \chi_{315}(157,r) e\left(\frac{1 r + 2 r^{-1}}{315}\right) = -27.3878936145+7.3385639764i \)