Properties

Label 305760.139
Modulus $305760$
Conductor $101920$
Order $168$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(305760, base_ring=CyclotomicField(168)) M = H._module chi = DirichletCharacter(H, M([84,105,0,84,60,112]))
 
Copy content pari:[g,chi] = znchar(Mod(139,305760))
 

Basic properties

Modulus: \(305760\)
Conductor: \(101920\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(168\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{101920}(139,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 305760.fpa

\(\chi_{305760}(139,\cdot)\) \(\chi_{305760}(7699,\cdot)\) \(\chi_{305760}(11059,\cdot)\) \(\chi_{305760}(21979,\cdot)\) \(\chi_{305760}(29539,\cdot)\) \(\chi_{305760}(32899,\cdot)\) \(\chi_{305760}(40459,\cdot)\) \(\chi_{305760}(43819,\cdot)\) \(\chi_{305760}(51379,\cdot)\) \(\chi_{305760}(54739,\cdot)\) \(\chi_{305760}(62299,\cdot)\) \(\chi_{305760}(73219,\cdot)\) \(\chi_{305760}(76579,\cdot)\) \(\chi_{305760}(84139,\cdot)\) \(\chi_{305760}(87499,\cdot)\) \(\chi_{305760}(98419,\cdot)\) \(\chi_{305760}(105979,\cdot)\) \(\chi_{305760}(109339,\cdot)\) \(\chi_{305760}(116899,\cdot)\) \(\chi_{305760}(120259,\cdot)\) \(\chi_{305760}(127819,\cdot)\) \(\chi_{305760}(131179,\cdot)\) \(\chi_{305760}(138739,\cdot)\) \(\chi_{305760}(149659,\cdot)\) \(\chi_{305760}(153019,\cdot)\) \(\chi_{305760}(160579,\cdot)\) \(\chi_{305760}(163939,\cdot)\) \(\chi_{305760}(174859,\cdot)\) \(\chi_{305760}(182419,\cdot)\) \(\chi_{305760}(185779,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{168})$
Fixed field: Number field defined by a degree 168 polynomial (not computed)

Values on generators

\((95551,114661,101921,183457,18721,211681)\) → \((-1,e\left(\frac{5}{8}\right),1,-1,e\left(\frac{5}{14}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 305760 }(139, a) \) \(1\)\(1\)\(e\left(\frac{97}{168}\right)\)\(e\left(\frac{11}{42}\right)\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{83}{84}\right)\)\(e\left(\frac{163}{168}\right)\)\(1\)\(e\left(\frac{37}{168}\right)\)\(e\left(\frac{65}{84}\right)\)\(e\left(\frac{101}{168}\right)\)\(e\left(\frac{2}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 305760 }(139,a) \;\) at \(\;a = \) e.g. 2