Properties

Label 304.bj
Modulus $304$
Conductor $304$
Order $36$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(304, base_ring=CyclotomicField(36))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,27,10]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(13,304))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(304\)
Conductor: \(304\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.0.19036714782161565107424425435655777110146017378670996611401194085493506048.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(21\) \(23\)
\(\chi_{304}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{304}(21,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{304}(29,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{304}(53,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{304}(109,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{304}(117,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{304}(165,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{304}(173,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{304}(181,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{304}(205,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{304}(261,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{304}(269,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\)