# Properties

 Label 3024.61 Modulus $3024$ Conductor $3024$ Order $36$ Real no Primitive yes Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(3024, base_ring=CyclotomicField(36))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,27,32,30]))

pari: [g,chi] = znchar(Mod(61,3024))

## Basic properties

 Modulus: $$3024$$ Conductor: $$3024$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$36$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 3024.hf

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(1135,757,785,2593)$$ → $$(1,-i,e\left(\frac{8}{9}\right),e\left(\frac{5}{6}\right))$$

## Values

 $$-1$$ $$1$$ $$5$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$37$$ $$-1$$ $$1$$ $$e\left(\frac{13}{36}\right)$$ $$e\left(\frac{23}{36}\right)$$ $$e\left(\frac{31}{36}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{5}{36}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$-i$$
 value at e.g. 2