sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([3,0,2,4]))
pari:[g,chi] = znchar(Mod(3007,3024))
\(\chi_{3024}(1423,\cdot)\)
\(\chi_{3024}(3007,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1135,757,785,2593)\) → \((-1,1,e\left(\frac{1}{3}\right),e\left(\frac{2}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 3024 }(3007, a) \) |
\(-1\) | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)