Properties

Label 3024.1889
Modulus $3024$
Conductor $21$
Order $2$
Real yes
Primitive no
Minimal no
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(3024)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,0,1,1]))
 
pari: [g,chi] = znchar(Mod(1889,3024))
 

Basic properties

Modulus: \(3024\)
Conductor: \(21\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{21}(20,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3024.k

\(\chi_{3024}(1889,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((1135,757,785,2593)\) → \((1,1,-1,-1)\)

Values

\(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\(1\)\(1\)\(1\)\(-1\)\(-1\)\(1\)\(-1\)\(-1\)\(1\)\(-1\)\(-1\)\(1\)
value at e.g. 2

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{21}) \)