Properties

 Label 30.f Modulus $30$ Conductor $5$ Order $4$ Real no Primitive no Minimal yes Parity odd

Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(30, base_ring=CyclotomicField(4))

M = H._module

chi = DirichletCharacter(H, M([0,1]))

chi.galois_orbit()

[g,chi] = znchar(Mod(7,30))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Basic properties

 Modulus: $$30$$ Conductor: $$5$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$4$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 5.c sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

Related number fields

 Field of values: $$\mathbb{Q}(i)$$ Fixed field: $$\Q(\zeta_{5})$$

Characters in Galois orbit

Character $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$
$$\chi_{30}(7,\cdot)$$ $$-1$$ $$1$$ $$i$$ $$1$$ $$-i$$ $$i$$ $$-1$$ $$-i$$
$$\chi_{30}(13,\cdot)$$ $$-1$$ $$1$$ $$-i$$ $$1$$ $$i$$ $$-i$$ $$-1$$ $$i$$