Basic properties
Modulus: | \(297\) | |
Conductor: | \(297\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(90\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 297.w
\(\chi_{297}(7,\cdot)\) \(\chi_{297}(13,\cdot)\) \(\chi_{297}(40,\cdot)\) \(\chi_{297}(52,\cdot)\) \(\chi_{297}(61,\cdot)\) \(\chi_{297}(79,\cdot)\) \(\chi_{297}(85,\cdot)\) \(\chi_{297}(94,\cdot)\) \(\chi_{297}(106,\cdot)\) \(\chi_{297}(112,\cdot)\) \(\chi_{297}(139,\cdot)\) \(\chi_{297}(151,\cdot)\) \(\chi_{297}(160,\cdot)\) \(\chi_{297}(178,\cdot)\) \(\chi_{297}(184,\cdot)\) \(\chi_{297}(193,\cdot)\) \(\chi_{297}(205,\cdot)\) \(\chi_{297}(211,\cdot)\) \(\chi_{297}(238,\cdot)\) \(\chi_{297}(250,\cdot)\) \(\chi_{297}(259,\cdot)\) \(\chi_{297}(277,\cdot)\) \(\chi_{297}(283,\cdot)\) \(\chi_{297}(292,\cdot)\)
Related number fields
Field of values: | $\Q(\zeta_{45})$ |
Fixed field: | Number field defined by a degree 90 polynomial |
Values on generators
\((56,244)\) → \((e\left(\frac{7}{9}\right),e\left(\frac{3}{10}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 297 }(184, a) \) | \(-1\) | \(1\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{11}{30}\right)\) |