sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(297, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([5,36]))
pari:[g,chi] = znchar(Mod(137,297))
| Modulus: | \(297\) | |
| Conductor: | \(297\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(90\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{297}(5,\cdot)\)
\(\chi_{297}(14,\cdot)\)
\(\chi_{297}(20,\cdot)\)
\(\chi_{297}(38,\cdot)\)
\(\chi_{297}(47,\cdot)\)
\(\chi_{297}(59,\cdot)\)
\(\chi_{297}(86,\cdot)\)
\(\chi_{297}(92,\cdot)\)
\(\chi_{297}(104,\cdot)\)
\(\chi_{297}(113,\cdot)\)
\(\chi_{297}(119,\cdot)\)
\(\chi_{297}(137,\cdot)\)
\(\chi_{297}(146,\cdot)\)
\(\chi_{297}(158,\cdot)\)
\(\chi_{297}(185,\cdot)\)
\(\chi_{297}(191,\cdot)\)
\(\chi_{297}(203,\cdot)\)
\(\chi_{297}(212,\cdot)\)
\(\chi_{297}(218,\cdot)\)
\(\chi_{297}(236,\cdot)\)
\(\chi_{297}(245,\cdot)\)
\(\chi_{297}(257,\cdot)\)
\(\chi_{297}(284,\cdot)\)
\(\chi_{297}(290,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((56,244)\) → \((e\left(\frac{1}{18}\right),e\left(\frac{2}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 297 }(137, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{13}{30}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)