Properties

Label 2960.2401
Modulus $2960$
Conductor $37$
Order $9$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2960, base_ring=CyclotomicField(18))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,0,0,10]))
 
pari: [g,chi] = znchar(Mod(2401,2960))
 

Basic properties

Modulus: \(2960\)
Conductor: \(37\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(9\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{37}(33,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2960.dk

\(\chi_{2960}(81,\cdot)\) \(\chi_{2960}(641,\cdot)\) \(\chi_{2960}(1681,\cdot)\) \(\chi_{2960}(1921,\cdot)\) \(\chi_{2960}(2081,\cdot)\) \(\chi_{2960}(2401,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 9.9.3512479453921.1

Values on generators

\((2591,741,1777,2481)\) → \((1,1,1,e\left(\frac{5}{9}\right))\)

Values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 2960 }(2401, a) \) \(1\)\(1\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2960 }(2401,a) \;\) at \(\;a = \) e.g. 2