sage: H = DirichletGroup(2960)
pari: g = idealstar(,2960,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 1152 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{4}\times C_{4}\times C_{36}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{2960}(2591,\cdot)$, $\chi_{2960}(741,\cdot)$, $\chi_{2960}(1777,\cdot)$, $\chi_{2960}(2481,\cdot)$ |
First 32 of 1152 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2960}(1,\cdot)\) | 2960.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{2960}(3,\cdot)\) | 2960.hb | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2960}(7,\cdot)\) | 2960.gi | 36 | no | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{2960}(9,\cdot)\) | 2960.gb | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2960}(11,\cdot)\) | 2960.eb | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(-i\) |
\(\chi_{2960}(13,\cdot)\) | 2960.gq | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2960}(17,\cdot)\) | 2960.hx | 36 | no | \(1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{2960}(19,\cdot)\) | 2960.hf | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{2960}(21,\cdot)\) | 2960.gs | 36 | no | \(1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{2960}(23,\cdot)\) | 2960.ef | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(i\) |
\(\chi_{2960}(27,\cdot)\) | 2960.do | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(1\) |
\(\chi_{2960}(29,\cdot)\) | 2960.ed | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(-i\) |
\(\chi_{2960}(31,\cdot)\) | 2960.ck | 4 | no | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-i\) | \(-i\) | \(i\) | \(-1\) | \(i\) | \(1\) |
\(\chi_{2960}(33,\cdot)\) | 2960.gk | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{2960}(39,\cdot)\) | 2960.hy | 36 | no | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2960}(41,\cdot)\) | 2960.gd | 18 | no | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2960}(43,\cdot)\) | 2960.cp | 4 | yes | \(-1\) | \(1\) | \(1\) | \(-i\) | \(1\) | \(i\) | \(i\) | \(1\) | \(1\) | \(-i\) | \(-1\) | \(1\) |
\(\chi_{2960}(47,\cdot)\) | 2960.eh | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(-i\) |
\(\chi_{2960}(49,\cdot)\) | 2960.fu | 18 | no | \(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{2960}(51,\cdot)\) | 2960.dx | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(-i\) |
\(\chi_{2960}(53,\cdot)\) | 2960.ha | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2960}(57,\cdot)\) | 2960.gp | 36 | no | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{2960}(59,\cdot)\) | 2960.hg | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{2960}(61,\cdot)\) | 2960.hh | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{2960}(63,\cdot)\) | 2960.eh | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(i\) |
\(\chi_{2960}(67,\cdot)\) | 2960.hm | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2960}(69,\cdot)\) | 2960.hc | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{2960}(71,\cdot)\) | 2960.ft | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2960}(73,\cdot)\) | 2960.bn | 4 | no | \(-1\) | \(1\) | \(-i\) | \(-i\) | \(-1\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(-1\) | \(-i\) | \(i\) |
\(\chi_{2960}(77,\cdot)\) | 2960.gz | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2960}(79,\cdot)\) | 2960.gm | 36 | no | \(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2960}(81,\cdot)\) | 2960.dk | 9 | no | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |