Properties

Label 2900.cy
Modulus $2900$
Conductor $2900$
Order $140$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2900, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([70,112,125])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(11,2900)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2900\)
Conductor: \(2900\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{2900}(11,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{97}{140}\right)\)
\(\chi_{2900}(31,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{61}{140}\right)\)
\(\chi_{2900}(131,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{51}{140}\right)\)
\(\chi_{2900}(171,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{39}{140}\right)\)
\(\chi_{2900}(211,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{127}{140}\right)\)
\(\chi_{2900}(271,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{59}{140}\right)\)
\(\chi_{2900}(311,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{57}{140}\right)\)
\(\chi_{2900}(391,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{93}{140}\right)\)
\(\chi_{2900}(491,\cdot)\) \(1\) \(1\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{103}{140}\right)\)
\(\chi_{2900}(511,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{27}{140}\right)\)
\(\chi_{2900}(591,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{13}{140}\right)\)
\(\chi_{2900}(611,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{117}{140}\right)\)
\(\chi_{2900}(711,\cdot)\) \(1\) \(1\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{107}{140}\right)\)
\(\chi_{2900}(791,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{43}{140}\right)\)
\(\chi_{2900}(831,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{101}{140}\right)\)
\(\chi_{2900}(891,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{113}{140}\right)\)
\(\chi_{2900}(931,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{81}{140}\right)\)
\(\chi_{2900}(971,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{9}{140}\right)\)
\(\chi_{2900}(1071,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{19}{140}\right)\)
\(\chi_{2900}(1091,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{83}{140}\right)\)
\(\chi_{2900}(1171,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{69}{140}\right)\)
\(\chi_{2900}(1191,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{33}{140}\right)\)
\(\chi_{2900}(1291,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{23}{140}\right)\)
\(\chi_{2900}(1331,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{11}{140}\right)\)
\(\chi_{2900}(1371,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{99}{140}\right)\)
\(\chi_{2900}(1411,\cdot)\) \(1\) \(1\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{17}{140}\right)\)
\(\chi_{2900}(1431,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{31}{140}\right)\)
\(\chi_{2900}(1471,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{29}{140}\right)\)
\(\chi_{2900}(1511,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{137}{140}\right)\)
\(\chi_{2900}(1671,\cdot)\) \(1\) \(1\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{139}{140}\right)\)
\(\chi_{2900}(1771,\cdot)\) \(1\) \(1\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{89}{140}\right)\)