Properties

Label 2900.cq
Modulus $2900$
Conductor $725$
Order $140$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2900, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([0,77,135])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(73,2900)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2900\)
Conductor: \(725\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 725.bn
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{2900}(73,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{1}{70}\right)\)
\(\chi_{2900}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{61}{70}\right)\)
\(\chi_{2900}(113,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{9}{70}\right)\)
\(\chi_{2900}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{39}{70}\right)\)
\(\chi_{2900}(153,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{67}{70}\right)\)
\(\chi_{2900}(177,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{51}{70}\right)\)
\(\chi_{2900}(213,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{19}{70}\right)\)
\(\chi_{2900}(217,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{43}{70}\right)\)
\(\chi_{2900}(417,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{3}{70}\right)\)
\(\chi_{2900}(433,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{13}{70}\right)\)
\(\chi_{2900}(437,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{69}{70}\right)\)
\(\chi_{2900}(453,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{17}{70}\right)\)
\(\chi_{2900}(653,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{57}{70}\right)\)
\(\chi_{2900}(717,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{53}{70}\right)\)
\(\chi_{2900}(733,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{53}{70}\right)\)
\(\chi_{2900}(797,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{57}{70}\right)\)
\(\chi_{2900}(997,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{17}{70}\right)\)
\(\chi_{2900}(1013,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{69}{70}\right)\)
\(\chi_{2900}(1017,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{13}{70}\right)\)
\(\chi_{2900}(1033,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{3}{70}\right)\)
\(\chi_{2900}(1233,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{43}{70}\right)\)
\(\chi_{2900}(1237,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{19}{70}\right)\)
\(\chi_{2900}(1273,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{51}{70}\right)\)
\(\chi_{2900}(1297,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{67}{70}\right)\)
\(\chi_{2900}(1313,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{39}{70}\right)\)
\(\chi_{2900}(1337,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{9}{70}\right)\)
\(\chi_{2900}(1373,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{61}{70}\right)\)
\(\chi_{2900}(1377,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{1}{70}\right)\)
\(\chi_{2900}(1577,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{31}{70}\right)\)
\(\chi_{2900}(1597,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{27}{70}\right)\)
\(\chi_{2900}(1613,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{59}{70}\right)\)