sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2900, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,4,0]))
pari:[g,chi] = znchar(Mod(581,2900))
\(\chi_{2900}(581,\cdot)\)
\(\chi_{2900}(1161,\cdot)\)
\(\chi_{2900}(1741,\cdot)\)
\(\chi_{2900}(2321,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1451,1277,901)\) → \((1,e\left(\frac{2}{5}\right),1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 2900 }(581, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) |
sage:chi.jacobi_sum(n)