sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2900, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([0,7,3]))
pari:[g,chi] = znchar(Mod(2357,2900))
\(\chi_{2900}(193,\cdot)\)
\(\chi_{2900}(293,\cdot)\)
\(\chi_{2900}(1157,\cdot)\)
\(\chi_{2900}(1257,\cdot)\)
\(\chi_{2900}(1493,\cdot)\)
\(\chi_{2900}(1693,\cdot)\)
\(\chi_{2900}(1993,\cdot)\)
\(\chi_{2900}(2057,\cdot)\)
\(\chi_{2900}(2293,\cdot)\)
\(\chi_{2900}(2357,\cdot)\)
\(\chi_{2900}(2657,\cdot)\)
\(\chi_{2900}(2857,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1451,1277,901)\) → \((1,i,e\left(\frac{3}{28}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 2900 }(2357, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(-1\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) |
sage:chi.jacobi_sum(n)