Properties

Label 2900.2357
Modulus $2900$
Conductor $145$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2900, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([0,7,3]))
 
Copy content pari:[g,chi] = znchar(Mod(2357,2900))
 

Basic properties

Modulus: \(2900\)
Conductor: \(145\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{145}(37,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2900.bw

\(\chi_{2900}(193,\cdot)\) \(\chi_{2900}(293,\cdot)\) \(\chi_{2900}(1157,\cdot)\) \(\chi_{2900}(1257,\cdot)\) \(\chi_{2900}(1493,\cdot)\) \(\chi_{2900}(1693,\cdot)\) \(\chi_{2900}(1993,\cdot)\) \(\chi_{2900}(2057,\cdot)\) \(\chi_{2900}(2293,\cdot)\) \(\chi_{2900}(2357,\cdot)\) \(\chi_{2900}(2657,\cdot)\) \(\chi_{2900}(2857,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.28.1455848000512373226044338588471370773272037506103515625.2

Values on generators

\((1451,1277,901)\) → \((1,i,e\left(\frac{3}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 2900 }(2357, a) \) \(1\)\(1\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{19}{28}\right)\)\(-1\)\(e\left(\frac{13}{28}\right)\)\(e\left(\frac{23}{28}\right)\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{6}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2900 }(2357,a) \;\) at \(\;a = \) e.g. 2