sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2900, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,4,15]))
pari:[g,chi] = znchar(Mod(191,2900))
| Modulus: | \(2900\) | |
| Conductor: | \(2900\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(20\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2900}(191,\cdot)\)
\(\chi_{2900}(331,\cdot)\)
\(\chi_{2900}(771,\cdot)\)
\(\chi_{2900}(911,\cdot)\)
\(\chi_{2900}(1491,\cdot)\)
\(\chi_{2900}(1931,\cdot)\)
\(\chi_{2900}(2071,\cdot)\)
\(\chi_{2900}(2511,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1451,1277,901)\) → \((-1,e\left(\frac{1}{5}\right),-i)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 2900 }(191, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(-1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) |
sage:chi.jacobi_sum(n)