Properties

Label 2900.1243
Modulus $2900$
Conductor $580$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2900, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([14,21,16]))
 
Copy content pari:[g,chi] = znchar(Mod(1243,2900))
 

Basic properties

Modulus: \(2900\)
Conductor: \(580\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{580}(83,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2900.cc

\(\chi_{2900}(7,\cdot)\) \(\chi_{2900}(107,\cdot)\) \(\chi_{2900}(343,\cdot)\) \(\chi_{2900}(807,\cdot)\) \(\chi_{2900}(1243,\cdot)\) \(\chi_{2900}(1707,\cdot)\) \(\chi_{2900}(1843,\cdot)\) \(\chi_{2900}(2307,\cdot)\) \(\chi_{2900}(2343,\cdot)\) \(\chi_{2900}(2443,\cdot)\) \(\chi_{2900}(2543,\cdot)\) \(\chi_{2900}(2807,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((1451,1277,901)\) → \((-1,-i,e\left(\frac{4}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 2900 }(1243, a) \) \(1\)\(1\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{15}{28}\right)\)\(-i\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{5}{28}\right)\)\(e\left(\frac{23}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2900 }(1243,a) \;\) at \(\;a = \) e.g. 2