sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2900, base_ring=CyclotomicField(140))
M = H._module
chi = DirichletCharacter(H, M([70,84,125]))
pari:[g,chi] = znchar(Mod(1171,2900))
| Modulus: | \(2900\) | |
| Conductor: | \(2900\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(140\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2900}(11,\cdot)\)
\(\chi_{2900}(31,\cdot)\)
\(\chi_{2900}(131,\cdot)\)
\(\chi_{2900}(171,\cdot)\)
\(\chi_{2900}(211,\cdot)\)
\(\chi_{2900}(271,\cdot)\)
\(\chi_{2900}(311,\cdot)\)
\(\chi_{2900}(391,\cdot)\)
\(\chi_{2900}(491,\cdot)\)
\(\chi_{2900}(511,\cdot)\)
\(\chi_{2900}(591,\cdot)\)
\(\chi_{2900}(611,\cdot)\)
\(\chi_{2900}(711,\cdot)\)
\(\chi_{2900}(791,\cdot)\)
\(\chi_{2900}(831,\cdot)\)
\(\chi_{2900}(891,\cdot)\)
\(\chi_{2900}(931,\cdot)\)
\(\chi_{2900}(971,\cdot)\)
\(\chi_{2900}(1071,\cdot)\)
\(\chi_{2900}(1091,\cdot)\)
\(\chi_{2900}(1171,\cdot)\)
\(\chi_{2900}(1191,\cdot)\)
\(\chi_{2900}(1291,\cdot)\)
\(\chi_{2900}(1331,\cdot)\)
\(\chi_{2900}(1371,\cdot)\)
\(\chi_{2900}(1411,\cdot)\)
\(\chi_{2900}(1431,\cdot)\)
\(\chi_{2900}(1471,\cdot)\)
\(\chi_{2900}(1511,\cdot)\)
\(\chi_{2900}(1671,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1451,1277,901)\) → \((-1,e\left(\frac{3}{5}\right),e\left(\frac{25}{28}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 2900 }(1171, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{140}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{23}{70}\right)\) | \(e\left(\frac{59}{140}\right)\) | \(e\left(\frac{33}{70}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{47}{140}\right)\) | \(e\left(\frac{53}{140}\right)\) | \(e\left(\frac{67}{70}\right)\) | \(e\left(\frac{69}{140}\right)\) |
sage:chi.jacobi_sum(n)