# Properties

 Label 2898.a Modulus $2898$ Conductor $1$ Order $1$ Real yes Primitive no Minimal yes Parity even

# Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2898, base_ring=CyclotomicField(2))

M = H._module

chi = DirichletCharacter(H, M([0,0,0]))

chi.galois_orbit()

[g,chi] = znchar(Mod(1,2898))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$2898$$ Conductor: $$1$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$1$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: no, induced from 1.a sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$5$$ $$11$$ $$13$$ $$17$$ $$19$$ $$25$$ $$29$$ $$31$$ $$37$$ $$41$$
$$\chi_{2898}(1,\cdot)$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$