Properties

Label 2890.331
Modulus $2890$
Conductor $289$
Order $136$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2890, base_ring=CyclotomicField(136)) M = H._module chi = DirichletCharacter(H, M([0,37]))
 
Copy content pari:[g,chi] = znchar(Mod(331,2890))
 

Basic properties

Modulus: \(2890\)
Conductor: \(289\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(136\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{289}(42,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2890.bf

\(\chi_{2890}(111,\cdot)\) \(\chi_{2890}(121,\cdot)\) \(\chi_{2890}(151,\cdot)\) \(\chi_{2890}(161,\cdot)\) \(\chi_{2890}(281,\cdot)\) \(\chi_{2890}(291,\cdot)\) \(\chi_{2890}(321,\cdot)\) \(\chi_{2890}(331,\cdot)\) \(\chi_{2890}(451,\cdot)\) \(\chi_{2890}(461,\cdot)\) \(\chi_{2890}(491,\cdot)\) \(\chi_{2890}(501,\cdot)\) \(\chi_{2890}(621,\cdot)\) \(\chi_{2890}(631,\cdot)\) \(\chi_{2890}(661,\cdot)\) \(\chi_{2890}(671,\cdot)\) \(\chi_{2890}(791,\cdot)\) \(\chi_{2890}(801,\cdot)\) \(\chi_{2890}(831,\cdot)\) \(\chi_{2890}(841,\cdot)\) \(\chi_{2890}(961,\cdot)\) \(\chi_{2890}(971,\cdot)\) \(\chi_{2890}(1011,\cdot)\) \(\chi_{2890}(1131,\cdot)\) \(\chi_{2890}(1141,\cdot)\) \(\chi_{2890}(1171,\cdot)\) \(\chi_{2890}(1181,\cdot)\) \(\chi_{2890}(1301,\cdot)\) \(\chi_{2890}(1341,\cdot)\) \(\chi_{2890}(1351,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{136})$
Fixed field: Number field defined by a degree 136 polynomial (not computed)

Values on generators

\((1157,581)\) → \((1,e\left(\frac{37}{136}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2890 }(331, a) \) \(1\)\(1\)\(e\left(\frac{37}{136}\right)\)\(e\left(\frac{23}{136}\right)\)\(e\left(\frac{37}{68}\right)\)\(e\left(\frac{35}{136}\right)\)\(e\left(\frac{11}{34}\right)\)\(e\left(\frac{55}{68}\right)\)\(e\left(\frac{15}{34}\right)\)\(e\left(\frac{91}{136}\right)\)\(e\left(\frac{111}{136}\right)\)\(e\left(\frac{1}{136}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2890 }(331,a) \;\) at \(\;a = \) e.g. 2