# Properties

 Label 2888.2411 Modulus $2888$ Conductor $152$ Order $18$ Real no Primitive no Minimal no Parity odd

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2888, base_ring=CyclotomicField(18))

M = H._module

chi = DirichletCharacter(H, M([9,9,10]))

pari: [g,chi] = znchar(Mod(2411,2888))

## Basic properties

 Modulus: $$2888$$ Conductor: $$152$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{152}(131,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 2888.u

sage: chi.galois_orbit()

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: 18.0.38713951190154487490850848768.1

## Values on generators

$$(2167,1445,2529)$$ → $$(-1,-1,e\left(\frac{5}{9}\right))$$

## Values

 $$a$$ $$-1$$ $$1$$ $$3$$ $$5$$ $$7$$ $$9$$ $$11$$ $$13$$ $$15$$ $$17$$ $$21$$ $$23$$ $$\chi_{ 2888 }(2411, a)$$ $$-1$$ $$1$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{11}{18}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 2888 }(2411,a) \;$$ at $$\;a =$$ e.g. 2