# Properties

 Label 2880.bj Modulus $2880$ Conductor $120$ Order $4$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2880, base_ring=CyclotomicField(4))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,2,2,1]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(737,2880))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$2880$$ Conductor: $$120$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$4$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 120.w sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\sqrt{-1})$$ Fixed field: 4.4.72000.1

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$
$$\chi_{2880}(737,\cdot)$$ $$1$$ $$1$$ $$i$$ $$1$$ $$i$$ $$-i$$ $$1$$ $$i$$ $$-1$$ $$1$$ $$-i$$ $$-1$$
$$\chi_{2880}(1313,\cdot)$$ $$1$$ $$1$$ $$-i$$ $$1$$ $$-i$$ $$i$$ $$1$$ $$-i$$ $$-1$$ $$1$$ $$i$$ $$-1$$