Properties

Label 2880.2411
Modulus $2880$
Conductor $192$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2880, base_ring=CyclotomicField(16))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([8,13,8,0]))
 
pari: [g,chi] = znchar(Mod(2411,2880))
 

Basic properties

Modulus: \(2880\)
Conductor: \(192\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{192}(107,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2880.eb

\(\chi_{2880}(251,\cdot)\) \(\chi_{2880}(611,\cdot)\) \(\chi_{2880}(971,\cdot)\) \(\chi_{2880}(1331,\cdot)\) \(\chi_{2880}(1691,\cdot)\) \(\chi_{2880}(2051,\cdot)\) \(\chi_{2880}(2411,\cdot)\) \(\chi_{2880}(2771,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.3965881151245791007623610368.1

Values on generators

\((2431,901,641,577)\) → \((-1,e\left(\frac{13}{16}\right),-1,1)\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\(1\)\(1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(i\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{7}{16}\right)\)\(1\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{7}{8}\right)\)
value at e.g. 2