# Properties

 Label 288.23 Modulus $288$ Conductor $144$ Order $12$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(288, base_ring=CyclotomicField(12))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([6,9,10]))

pari: [g,chi] = znchar(Mod(23,288))

## Basic properties

 Modulus: $$288$$ Conductor: $$144$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$12$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{144}(131,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 288.y

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{12})$$ Fixed field: 12.12.3327916660110655488.1

## Values on generators

$$(127,37,65)$$ → $$(-1,-i,e\left(\frac{5}{6}\right))$$

## Values

 $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-1$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$
 value at e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 288 }(23,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{288}(23,\cdot)) = \sum_{r\in \Z/288\Z} \chi_{288}(23,r) e\left(\frac{r}{144}\right) = 23.977157318+1.0468652968i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 288 }(23,·),\chi_{ 288 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{288}(23,\cdot),\chi_{288}(1,\cdot)) = \sum_{r\in \Z/288\Z} \chi_{288}(23,r) \chi_{288}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 288 }(23,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{288}(23,·)) = \sum_{r \in \Z/288\Z} \chi_{288}(23,r) e\left(\frac{1 r + 2 r^{-1}}{288}\right) = 0.0$$