# Properties

 Label 287.62 Modulus $287$ Conductor $287$ Order $20$ Real no Primitive yes Minimal yes Parity odd

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(287, base_ring=CyclotomicField(20))

M = H._module

chi = DirichletCharacter(H, M([10,7]))

pari: [g,chi] = znchar(Mod(62,287))

## Basic properties

 Modulus: $$287$$ Conductor: $$287$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$20$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 287.t

sage: chi.galois_orbit()

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{20})$$ Fixed field: 20.0.1241291203716901419760482976136252014889.1

## Values on generators

$$(206,211)$$ → $$(-1,e\left(\frac{7}{20}\right))$$

## First values

 $$a$$ $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$8$$ $$9$$ $$10$$ $$11$$ $$12$$ $$\chi_{ 287 }(62, a)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{10}\right)$$ $$-i$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$-1$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{19}{20}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 287 }(62,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 287 }(62,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 287 }(62,·),\chi_{ 287 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 287 }(62,·)) \;$$ at $$\; a,b =$$ e.g. 1,2