Properties

Conductor 287
Order 24
Real No
Primitive Yes
Parity Even
Orbit Label 287.w

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(287)
 
sage: chi = H[3]
 
pari: [g,chi] = znchar(Mod(3,287))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 287
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 24
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 287.w
Orbit index = 23

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{287}(3,\cdot)\) \(\chi_{287}(38,\cdot)\) \(\chi_{287}(68,\cdot)\) \(\chi_{287}(96,\cdot)\) \(\chi_{287}(150,\cdot)\) \(\chi_{287}(178,\cdot)\) \(\chi_{287}(208,\cdot)\) \(\chi_{287}(243,\cdot)\)

Values on generators

\((206,211)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{3}{8}\right))\)

Values

-112345689101112
\(1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{7}{8}\right)\)\(i\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{23}{24}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{24})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 287 }(3,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{287}(3,\cdot)) = \sum_{r\in \Z/287\Z} \chi_{287}(3,r) e\left(\frac{2r}{287}\right) = 16.5682872247+-3.5343823279i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 287 }(3,·),\chi_{ 287 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{287}(3,\cdot),\chi_{287}(1,\cdot)) = \sum_{r\in \Z/287\Z} \chi_{287}(3,r) \chi_{287}(1,1-r) = 1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 287 }(3,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{287}(3,·)) = \sum_{r \in \Z/287\Z} \chi_{287}(3,r) e\left(\frac{1 r + 2 r^{-1}}{287}\right) = -7.4372768658+-1.9928123301i \)