Properties

Label 287.25
Modulus $287$
Conductor $287$
Order $30$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(287, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,3]))
 
pari: [g,chi] = znchar(Mod(25,287))
 

Basic properties

Modulus: \(287\)
Conductor: \(287\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 287.z

\(\chi_{287}(4,\cdot)\) \(\chi_{287}(23,\cdot)\) \(\chi_{287}(25,\cdot)\) \(\chi_{287}(72,\cdot)\) \(\chi_{287}(86,\cdot)\) \(\chi_{287}(107,\cdot)\) \(\chi_{287}(228,\cdot)\) \(\chi_{287}(277,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((206,211)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{1}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 287 }(25, a) \) \(1\)\(1\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{1}{30}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 287 }(25,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 287 }(25,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 287 }(25,·),\chi_{ 287 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 287 }(25,·)) \;\) at \(\; a,b = \) e.g. 1,2