Properties

Label 287.13
Modulus $287$
Conductor $287$
Order $40$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(287, base_ring=CyclotomicField(40))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([20,31]))
 
pari: [g,chi] = znchar(Mod(13,287))
 

Basic properties

Modulus: \(287\)
Conductor: \(287\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 287.bb

\(\chi_{287}(6,\cdot)\) \(\chi_{287}(13,\cdot)\) \(\chi_{287}(34,\cdot)\) \(\chi_{287}(48,\cdot)\) \(\chi_{287}(69,\cdot)\) \(\chi_{287}(76,\cdot)\) \(\chi_{287}(97,\cdot)\) \(\chi_{287}(104,\cdot)\) \(\chi_{287}(111,\cdot)\) \(\chi_{287}(153,\cdot)\) \(\chi_{287}(181,\cdot)\) \(\chi_{287}(188,\cdot)\) \(\chi_{287}(216,\cdot)\) \(\chi_{287}(258,\cdot)\) \(\chi_{287}(265,\cdot)\) \(\chi_{287}(272,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.40.63172957949423116502957480067191906200305068755882825968063357506461803384975161.1

Values on generators

\((206,211)\) → \((-1,e\left(\frac{31}{40}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\(1\)\(1\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{11}{40}\right)\)\(e\left(\frac{9}{20}\right)\)\(i\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{13}{40}\right)\)\(e\left(\frac{17}{40}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 287 }(13,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 287 }(13,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 287 }(13,·),\chi_{ 287 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 287 }(13,·)) \;\) at \(\; a,b = \) e.g. 1,2