Properties

Label 287.110
Modulus $287$
Conductor $287$
Order $120$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(287, base_ring=CyclotomicField(120))
 
M = H._module
 
chi = DirichletCharacter(H, M([100,33]))
 
pari: [g,chi] = znchar(Mod(110,287))
 

Basic properties

Modulus: \(287\)
Conductor: \(287\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(120\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 287.be

\(\chi_{287}(12,\cdot)\) \(\chi_{287}(17,\cdot)\) \(\chi_{287}(19,\cdot)\) \(\chi_{287}(24,\cdot)\) \(\chi_{287}(26,\cdot)\) \(\chi_{287}(47,\cdot)\) \(\chi_{287}(52,\cdot)\) \(\chi_{287}(54,\cdot)\) \(\chi_{287}(75,\cdot)\) \(\chi_{287}(89,\cdot)\) \(\chi_{287}(94,\cdot)\) \(\chi_{287}(101,\cdot)\) \(\chi_{287}(108,\cdot)\) \(\chi_{287}(110,\cdot)\) \(\chi_{287}(117,\cdot)\) \(\chi_{287}(129,\cdot)\) \(\chi_{287}(136,\cdot)\) \(\chi_{287}(138,\cdot)\) \(\chi_{287}(145,\cdot)\) \(\chi_{287}(152,\cdot)\) \(\chi_{287}(157,\cdot)\) \(\chi_{287}(171,\cdot)\) \(\chi_{287}(192,\cdot)\) \(\chi_{287}(194,\cdot)\) \(\chi_{287}(199,\cdot)\) \(\chi_{287}(220,\cdot)\) \(\chi_{287}(222,\cdot)\) \(\chi_{287}(227,\cdot)\) \(\chi_{287}(229,\cdot)\) \(\chi_{287}(234,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

\((206,211)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{11}{40}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 287 }(110, a) \) \(1\)\(1\)\(e\left(\frac{49}{60}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{13}{60}\right)\)\(e\left(\frac{31}{40}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{19}{120}\right)\)\(e\left(\frac{71}{120}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 287 }(110,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 287 }(110,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 287 }(110,·),\chi_{ 287 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 287 }(110,·)) \;\) at \(\; a,b = \) e.g. 1,2