sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28665, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([28,42,34,35]))
pari:[g,chi] = znchar(Mod(27319,28665))
| Modulus: | \(28665\) | |
| Conductor: | \(28665\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{28665}(934,\cdot)\)
\(\chi_{28665}(2749,\cdot)\)
\(\chi_{28665}(4084,\cdot)\)
\(\chi_{28665}(5584,\cdot)\)
\(\chi_{28665}(6844,\cdot)\)
\(\chi_{28665}(8179,\cdot)\)
\(\chi_{28665}(9124,\cdot)\)
\(\chi_{28665}(9679,\cdot)\)
\(\chi_{28665}(10939,\cdot)\)
\(\chi_{28665}(12274,\cdot)\)
\(\chi_{28665}(13219,\cdot)\)
\(\chi_{28665}(13774,\cdot)\)
\(\chi_{28665}(15034,\cdot)\)
\(\chi_{28665}(16369,\cdot)\)
\(\chi_{28665}(17314,\cdot)\)
\(\chi_{28665}(17869,\cdot)\)
\(\chi_{28665}(21409,\cdot)\)
\(\chi_{28665}(21964,\cdot)\)
\(\chi_{28665}(23224,\cdot)\)
\(\chi_{28665}(24559,\cdot)\)
\(\chi_{28665}(25504,\cdot)\)
\(\chi_{28665}(26059,\cdot)\)
\(\chi_{28665}(27319,\cdot)\)
\(\chi_{28665}(28654,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((25481,11467,18721,11026)\) → \((e\left(\frac{1}{3}\right),-1,e\left(\frac{17}{42}\right),e\left(\frac{5}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | \(29\) |
| \( \chi_{ 28665 }(27319, a) \) |
\(1\) | \(1\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(i\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) |
sage:chi.jacobi_sum(n)